Proposed Product Category for Biobased Categorization

The following biobased product information has been collected to support product category desgination by USDA for the BioPreferred Program. This summary reflects data available as of June 12, 2009.

Title: Wood and Concrete Stains

Description: Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the color without concealing the grain pattern or surface texture.

Companies Supplying Product Category: 15 companies supplying Wood and Concrete Stains have been identified through internet searches, manufacturer's directories, trade associations, and company submissions.

Industry Associations Investigated: The following industry associations have been investigated for member companies supplying Wood and Concrete Stains:

- United Soybean Board Association
- National Corn Growers Association
- National Wood Flooring Association
- American Concrete Pavement Association
- American Wood Protection Association

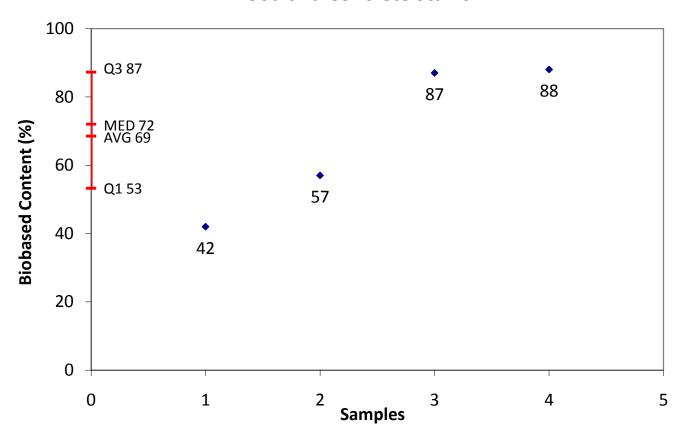
Commercially Available Products Identified: Of the companies identified, 48 Wood and Concrete Stains are commercially available on the market.

Product Information Collected: Specific product information including company contact, intended use, biobased content, and performance characteristics have been collected on 3 Wood and Concrete Stains.

Industry Performance Standards: Product information submitted by biobased manufacturers and suppliers indicate that have typically been tested to the following industry standards:

GREENGUARD Indoor Air Quality Certified® standard for indoor air quality

Samples Tested for Biobased Content: 4 samples of Wood and Concrete Stains have been submitted to independent laboratories for biobased content testing as specified by ASTM standard D6866.

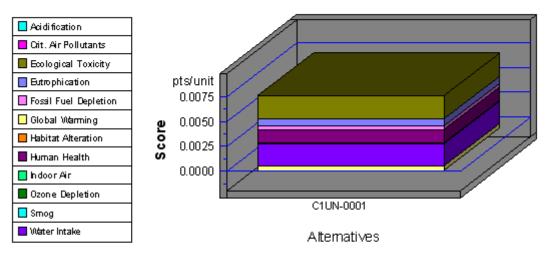

Biobased Content Data: Results from biobased content testing of Wood and Concrete Stains indicate a range of content percentages from 42% minimum to 88% maximum biobased content as defined by ASTM D6866. A detailed distribution of biobased content levels is included as Appendix A.

Products Submitted for BEES Analysis: Life-cycle cost and environmental effect data for 1 Wood and Concrete Stains have been submitted to NIST for BEES analysis.

BEES Analysis: The life-cycle cost of the submitted Wood and Concrete Stains is \$7.49 per usage unit. The environmental score is 0.0067. A detailed summary of the BEES results is included as Appendix B.

Appendix A - Biobased Content Data

Wood and Concrete Stains

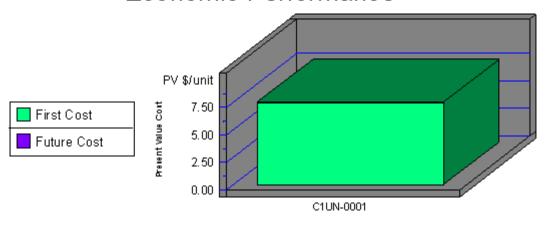


	Company	Product	C14	BEES
1	W7UT	W7UT-0001	42	
2	KFA3	KFA3-0001	57	
3	C1UN	C1UN-0002	87	Yes
4	Q14G	Q14G-0016	88	

Appendix B - BEES Analysis Results

Functional Unit: 192 sq. ft. of stained wood

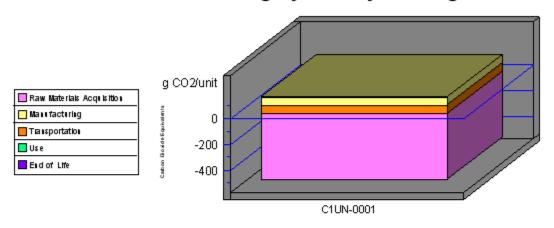
Environmental Performance


Note: Lower values are better

Category	C1UN-0001	
Adidification3%	0.0000	
Crit. Air Pollutants9%	0.0000	
Ecolog. Toxicity7%	0.0024	
Eutrophic ation6%	0.0007	
Fossil Fuel Depl10%	0.0003	
Global Warming29%	-0.0004	
Habitat Alteration6%	0.0000	
Human Health-13%	0.0014	
Indoor Air3%	0.0000	
Ozone Depletion2%	0.0000	
Smog4%	0.0001	
Water Intake8%	0.0022	
Sum	0.0067	

Wood and Concrete Stain					
Impacts	Units	C1UN-0001			
Acidification	millimoles H ⁺ equivalents	2.37E+02			
Criteria Air Polutants	microDALYs	6.25E-02			
Ecotoxicity	g 2,4-D equivalents	2.82E+01			
Eutrophication	g N equivalents	2.29E+00			
Fossil Fuel Depletion	MJ surplus energy	1.07E+00			
Global Warming	g CO ₂ equivalents	-3.83E+02			
Habitat Alteration	T&E count	0.00E+00			
Human HealthCancer	g C ₆ H ₆ equivalents	9.11E-01			
Human HealthNonCancer	g C ₇ H ₈ equivalents	1.46E+03			
Indoor Air Quality	g TVOCs	0.00E+00			
Ozone Depletion	g CFC-11 equivalents	2.61E-07			
Smog	g NO _x equivalents	3.40E+00			
Water Intake	liters of water	1.45E+02			
Functional Unit		192 sq. ft. of stained wood			

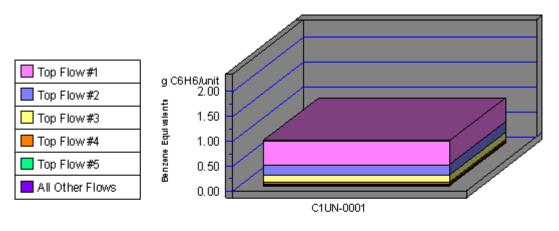
¹ Following are more complete descriptions of units: Acidification: millimoles of hydrogen ion equivalents; Criteria Air Pollutants: micro Disability-Adjusted Life Years; Ecological Toxicity: grams of 2,4-dichlorophenoxy-acetic acid equivalents; Eutrophication: grams of nitrogen equivalents; Fossil Fuel Depletion: megajoules of surplus energy; Global Warming: grams of carbon dioxide equivalents; Habitat Alteration: threatened and endangered species count; Human Health-Cancer: grams of benzene equivalents; Human Health-NonCancer: grams of toluene equivalents; Indoor Air Quality: grams of Total Volatile Organic Compounds; Ozone Depletion: grams of chloroflourocarbon-11 equivalents; Smog: grams of nitrogen oxide equivalents; and Water Intake: liters of water.


Economic Performance

Altematives

Category	C1UN-0001
First Cost	7.49
Future Cost- 3.0%	0.00
Sum	7.49

Global Warming by Life-Cycle Stage

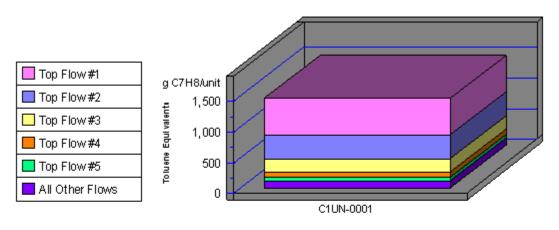


Alternatives

Note: Lower values are better

Category	C1UN-0001
1. Raw Materials	-512
2. Manufacturing	59
3. Transportation	69
4. Use	0
5. End of Life	0
Sum	-383

Human Health Cancer by Sorted Flows*


Alternatives

Note: Lower values are better

Category	C1UN-0001	
Cancer-(a) Dioxins (unspecifie	0.47	
Cancer-(w) Phenol (C6H5OH)	0.21	
Cancer-(w) Arsenic (As3+,	0.15	
Cancer(a) Arsenic (As)	0.03	
Cancer-(a) Simazine	0.03	
All Others	0.02	
Sum	0.91	

^{*}Sorted by five topmost flows for worst-scoring product

Human Health Noncancer by Sorted Flows*

Alternatives

Note: Lower values are better

Category	C1UN-0001
Nonc ancer-(a) Dioxins (unspeci	592.01
Noncancer-(a) Mercury (Hg)	383.83
Noncancer-(w) Mercury (Hg+,	218.40
Noncancer(a) Aluminum (Al)	88.05
Noncancer(a) Lead (Pb)	60.05
All Others	120.76
Sum	1,463.09

^{*}Sorted by five topmost flows for worst-scoring product